УДК 621.39

Сравнительное исследование многоканальных многопролетных волоконно-оптических систем связи с энергетическим и когерентным приемом

Глаголев С. Ф., Какусилумезо С. Э., Агоштинью П. С.

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича Санкт-Петербург, 193232, Российская Федерация

Постановка задачи. В настоящее время на транспортных и магистральных сетях связи применяются многоканальные многопролетные волоконно-оптические системы связи с энергетическим и когерентным приемом цифровых оптических сигналов. Все они используют плотное мультиплексирование в волновой области и линейные оптические усилители в каждом пролете. Регенерационное оборудование входит в состав приемной части транспондеров и устанавливается только в оконечных узлах связи. Целью работы является разграничение областей применения волоконно-оптических систем связи с энергетическим и когерентным приемом. Для этого проведено всестороннее сравнительное исследование современных многопролетных волоконнооптических систем связи со скоростью 10 Гбит/с с энергетическим и когерентным приемом, использующих имитационное моделирование процессов генерации, усиления, передачи, приема и обработки цифровых оптических сигналов. Новизна работы заключается в предложенных схемах моделирования и методиках их исследования. Результат: получены объективные критерии для сравнения волоконно-оптических систем связи с энергетическим и когерентным приемом, определены области их использования на сетях связи. Практическая значимость: разработанные схемы моделирования могут быть применены при проектировании волоконно-оптических систем связи, кроме того, они будут использованы в новых лабораторных работах на кафедре оптических и квантовых систем связи.

Ключевые слова: плотное мультиплексирование в волновой области, энергетический прием, когерентный прием, пороговая чувствительность, оптическое отношение сигнала к шуму, Q-фактор

Введение

В высокоскоростных волоконно-оптических системах связи (ВОСС) большой протяженности используются два основных метода приема цифровых оптических сигналов: энергетический (ЭП) и когерентный (КП) [1–4]. При ЭП информация содержится в изменениях мощности сигнала от одного передаваемого символа к другому [2]. Обычно в ВОСС с ЭП применяется амплитудная модуляция (АМ), чаще всего бинарная. ВОСС с ЭП используют канальные скорости передачи обычно до *B*_c = 10 Гбит/с. В ВОСС с КП могут применяться любые виды многоуровневой модуляции: АМ, частотная (ЧМ), фазовая (ФМ) и их комбинации, из которых наибольшее распространение получила квадратурная амплитудная модуляция (КАМ) [3, 4]. Главной особенностью ВОСС с КП является использование на приеме оптического гетеродина — источника непрерывного оптического квазимонохроматического излучения. При смешивании излу-

Библиографическая ссылка на статью:

Глаголев С. Ф., Какусилумезо С. Э., Агоштинью П. С. Сравнительное исследование многоканальных многопролетных волоконно-оптических систем связи с энергетическим и когерентным приемом // Вестник СПбГУТ. 2024. Т. 2. № 3. С. 4. EDN: JVPGVZ

Reference for citation:

Glagolev S., Kakusilumezo S., Agostinho P. Comparative Study of Multi-channel Multi-span Fiber-optic Communication Systems with Energy and Coherent Reception // Herald of SPbSUT. 2024. Vol. 2. Iss. 3. P. 4. EDN: JVPGVZ

чения сигнала и гетеродина происходит перенос несущей частоты сигнала на более низкую промежуточную частоту; при этом на промежуточной частоте сохраняется вся информация о сигнале при любом формате модуляции. ВОСС с КП благодаря возможности применения любых форматов многоуровневой модуляции позволяет использовать высокие битовые скорости передачи от $B_c = 100$ Гбит/с и более. Часто количество передаваемых уровней сигнала определяется как $K = 2^k$, где k – количество бит, передаваемых за один такт. При многоуровневой модуляции символьная скорость $B_{cs} = \frac{B_c}{k} \Gamma Бод$ снижается в k раз, что позволяет во столько же раз снизить полосы пропускания в волоконно-оптическом линейном тракте (ВОЛТ) и в электрическом тракте фотоприемного устройства (ФПУ).

Целью исследования является сравнение простоты и экономичности технических решений, качества и дальности связи в ВОСС с ЭП и КП. Для корректного сравнения в этой работе ограничимся одной длиной стандартного телекоммуникационного оптического волокна (OB) в пролете 100 км, одной канальной скоростью передачи $B_c = 10$ Гбит/с как наибольшей для ВОСС с ЭП. Будем изменять количество пролетов от 1 до 15, уровень сигнала на входе в ВОЛТ, а для ВОСС с ЭП — тип линейного кодирования (NRZ, *аббр. от англ.* Non Return to Zero — без возврата к нулю, или RZ, *аббр. от англ.* Return to Zero — с возвратом к нулю). Качество связи будем оценивать с помощью Q-фактора и оптического отношения сигнала к шуму (*OSNR*_{out}) на выходе ВОЛТ [1].

Моделирование ВОСС с ЭП

Для моделирования ВОСС с ЭП будем использовать схему в программе OptiSystem (рисунок 1) [5]. Схема включает четыре оптических передатчика (Optical Transmitter) с амплитудной бинарной модуляцией и интервалом между каналами по частоте $\Delta v_c = 50$ ГГц. Сигналы передатчиков объединяются мультиплексором (WDM Mux) и после усиления в оптическом усилителе (OY) мощности поступают в многопролетный ВОЛТ, который заканчивается демультиплексором (WDM Demux). Полосы пропускания мультиплексора и демультиплексора выбраны равными $\Delta v_{mux} = 30$ ГГц. ВОЛТ состоит из последнего пролета (перед демультиплексором) и нескольких одинаковых прозрачных пролетов, объединенных петлевым элементом (Loop Control). Количество пролетов можно изменять в широких пределах установкой параметра (Number of Loops). Каждый пролет ВОЛТ состоит из телекоммуникационного ОВ длиной 100 км, обозначенного SMF (*аббр. от англ.* Single-mode Optical Fiber — одномодовое оптическое волокно), и компенсирующего OB (DCF, *аббр. от англ.* Dispersion Compensation Fiber — волокно для компенсации дисперсии), а также эрбиевого ОУ типа EDFA. (*аббр. от англ.* Erbium Doped Fiber Amplifier — усилитель на волокне, легированном эрбием).

Рис.1. Четырехканальная многопролетная ВОСС с ЭП и канальной скоростью 10 Гбит/с

Длина OB DCF выбрана исходя из условия полной компенсации хроматической дисперсии (ХД) в пролете, а коэффициент усиления линейного ОУ — из условия полной компенсации затухания в пролете ВОСС. На выходе ВОЛТ перед демультиплексором установлен предварительный ОУ (ПОУ), коэффициент усиления которого меньше, чем линейного ОУ, так как его сигнал подается не в следующий пролет, а на чувствительное ФПУ.

Выходной сигнал ВОЛТ разделяется демультиплексором, имеющим затухание 5 дБ, на отдельные канальные сигналы, которые поступают на свои ФПУ. Изменения мощности приходящего излучения сначала преобразуются в фототок в фотодиоде (ФД), а затем в напряжение в усилителе фототока (УФТ), который представляет собой фильтр нижних частот (ФНЧ) с частотой среза 7,5 ГГц. Аналоговое напряжение на выходе УФТ по форме представляет собой реакцию ВОЛТ на входной цифровой сигнал с учетом искажений и шумов. Далее это напряжение преобразуется в цифровой бинарный сигнал в коде NRZ в регенераторе, который входит в состав ФПУ.

Для проведения исследований в схему ВОСС входят: измерители оптической мощности (Optical Power Meter), оптические осциллографы (Optical Time Domain Visualizer, OTDV), оптические спектроанализаторы (Optical Spectrum Analyzer, OSA), анализаторы коэффициента битовых ошибок (Bit Error Rate (BER) Analyzer) и электрические осциллографы (Oscilloscope) [5].

Исходные данные и результаты исследований для ВОСС с ЭП помещены в таблицу 1, где использованы обозначения: для коэффициента усиления ПОУ — g_{noy} , а для пиковой мощности выходного сигнала — p_{sm_out} .

У	становленны	ые параметры	bl	Измеренные величины							
Кол-во пролетов, <i>N</i>	Код	<i>р_{s_in},</i> дБм	g _{noy} , дБ	OSNR _{in} , дБ	p _{s_out} , дБм	р _{sm_out} , дБм (OSA)	<i>р</i> ∉, дБм	OSNR _{out} , дБ	Q-фактор		
1	NRZ	1,0	18	42	-1,9	-11	-16	24	13		
5	NRZ	1,0	18	42	2,9	-11	-17	16	7		
1	NRZ	5,0	18	42	0,5	-7	-12	28	23		
5	NRZ	5,0	18	42	2 3,9 -7		-12	21	13		
10	NRZ	5,0	18	42	6,0	-7	-12	18	9		
15	NRZ	5,0	18	42	7,6	-7	-12	16	7		
15	NRZ	8,0	18	42	8,2	-4,5	-9	18,5	7,6		
15	NRZ	10	18	42	8,7	-3	-3 -7,2	17	4,7		
5	NRZ	10	18	42	5,6	-3	-8	25	13		
5	NRZ	13	18	42	7,5	-1	-5,2	27	10		
1	RZ-66	5,0	18	37	0,5	-9	-12	26	28		
5	RZ-66	5,0	18	37	3,9	-9	-12	19	13		
10	RZ-66	5,0	18	37	6,1	-8	-12	17	10		
15	RZ-66	5,0	18	37	7,6	-8	-12	15	9		
15	RZ-66	10	18	37	8,7	-3	-8	15	11		
15	RZ-66	13	18	37	10	-3	-5,7	6	7		

Таблица 1. Результаты исследований ВОСС с ЭП

Из таблицы видно, что ВОСС с ЭП и кодированием NRZ обеспечивает высокое качество связи Q > 7 на расстояниях, по крайней мере, до 1500 км (15 пролетов) при среднем уровне суммарного входного сигнала на входе в пролеты $p_{s_in} = 5$ дБм (3,16 мВт), что соответствует канальной мощности 0,8 мВт. С уменьшением входного сигнала до $p_{s_in} = 1$ дБм качество связи снижается, Q-фактор уменьшается при $p_{s_in} = 5$ дБм с 23 до 13 в однопролетной ВОСС при кодировании NRZ.

При этом кодировании и $p_{s_in} = 5$ дБм с увеличением количества пролетов *N* с 1 до 15 (общая длина ВОСС изменяется от 100 до 1500 км) *Q*-фактор и *OSNR*_{out} постепенно уменьшаются. *Q*-фактор от 23 до 7, а *OSNR*_{out} — от 28 до 16. Можно отметить, что с увеличением количества пролетов нарастает постоянный уровень усиленного спонтанного излучения (УСИ) на выходе ВОЛТ p_{s_out} от 0,5 до 7,6 дБм. В принципе он может дополнительно увеличивать уровень шума на выходе ФПУ за счет увеличения дробового шума и шумов, обусловленных биениями излучения сигнала и УСИ, а также биения между излучениями УСИ разных частот. Однако за счет фильтрующего действия демультиплексора УСИ эффективно подавляется до ФПУ. При этом уровень сигнала на входе ФПУ p_{ϕ} практически не зависит от количества пролетов.

С увеличением входного сигнала при N = 5 (длина ВОСС 500 км) качество связи сначала растет с Q = 7 (при $p_{s_in} = 1$ дБм), достигает максимума Q = 13 (при $p_{s_in} = 10$ дБм) и начинает уменьшаться за счет нелинейных искажений до Q = 10 (при $p_{s_in} = 13$ дБм и уровне канального сигнала 5 мВт). Увеличение входного сигнала для ВОСС с 15 пролетами от $p_{s_in} = 5$ до 8 дБм приводит к некоторому увеличению Q-фактора с 7 до 7,6. Затем с увеличением p_{s_in} до 10 дБм Q-фактор уменьшается до 4,7 за счет нелинейных искажений. Таким образом, можно отметить, что оптимальный уровень входной мощности зависит от количества пролетов и общей длины ВОСС. Для пяти пролетов она составляет в нашем случае 10 дБм, а для 15 пролетов — 8 дБм.

Использование кодирования RZ-66 вместо NRZ улучшает качество связи. В однопролетной ВОСС при этом переходе Q-фактор возрастает с 23 до 28 (p_{s_in} = 5 дБм), при некотором снижении OSNR_{out} с 28 до 26 дБ. В многопролетной ВОСС с N = 15 (1500 км) при p_{s_in} = 5 дБм использование кода RZ-66 повышает Q-фактор с 7 до 9, что очень существенно.

Рис. 2. Спектрограммы сигнала на входе (а) и выходе (б) ВОЛТ

На рисунке 2 показаны спектрограммы оптического сигнала на входе и выходе 5-пролетного ВОЛТ общей длиной 500 км при разрешающей способности OSA **Δλ** = **0**, **01** нм. Видно, что амплитуда выходного сигнала меньше входного на 6 дБ. Это связано с тем, что коэффициент усиления предварительного ОУ (18 дБ) в последнем пролете на 6 дБ меньше коэффициента усиления линейного ОУ (24 дБ).

Рис. 3. Спектрограмма сигнала на выходе: а) ВОЛТ, б) демультиплексора

На рисунке 3а показана спектрограмма сигнала на выходе ВОЛТ при разрешающей способности OSA Δλ = 0,1 нм, которую рекомендуется устанавливать при измерении OSNR (в нашем случае оно составило 21 дБ). На рисунке 3б показана спектрограмма оптического сигнала на выходе 4-го канала демультиплексора и на входе ФПУ. Видно, что демультиплексор подавляет сигналы соседних каналов не менее чем на 18 дБ.

Рис. 4. Осциллограмма электрического сигнала на входе (а) и выходе (б) регенератора

На рисунке 4, где показаны электрические сигналы на входе и выходе регенератора ФПУ 4-го канала, видно, что входной сигнал сильно искажен.

Рис. 5. Глаз-диаграмма сигнала в 4-м канале ВОСС Q = 12,9

На рисунке 5 показана глаз-диаграмма на экране анализатора ошибок. Видно, что шумы в электрическом сигнале проявляются сильнее при приеме логической «1» по сравнению с приемом логического «0». На экране глаз-диаграммы также видна зависимость уровня оптимального порога от момента принятия решения, который смещен в сторону уровня логического «0».

Моделирование ВОСС с КП

Схема четырехканальной ВОСС с КП (рисунок 6) во многом аналогична ВОСС с ЭП (рисунок 1): длины пролетов, параметры телекоммуникационных ОВ (ТК ОВ), количество каналов, их частоты и частотный интервал между ними одинаковы. ВОСС с КП содержит четыре оптических передатчика с четырехуровневой фазовой модуляцией (Quadrature Phase Shift Keying, QPSK). В многопролетном ВОЛТ с КП отсутствуют компенсирующие ОВ (DCF), так как электронная компенсация ХД в ТК ОВ происходит в транспондере оконечного пункта.

Рис. 6. Четырехканальная многопролетная ВОСС с КП и канальной скоростью 10 Гбит/с

ФПУ каждого канала ВОСС с КП содержит оптический гетеродин с уровнем мощности 3 дБм, частотой максимально близкой к несущей частоте канального сигнала, оптическую схему 90-градусного гибрида и четыре ФД, объединенные в два балансных фотоприемника (БФП). На выходах БФП формируются последовательности электрических сигналов, соответствующие синфазной и квадратурной составляющим принятого символа, которые сразу же поступают на аналого-цифровые преобразователи. Однако из-за различных искажений оптических сигналов в ВОЛТ, шумов ФПУ и УСИ необходима сложная цифровая обработка сигналов (ЦОС), которую выполняет быстродействующий цифровой сигнальный процессор (Digital Signal Processor, DSP). Для контроля качества связи в ВОСС с КП используются анализаторы сигнальных созвездий (Constellation Visualizer), которые не только позволяют наблюдать сигнальные созвездия выходных сигналов на выходе DSP, но и выдают расчетные значения BER и Q-фактора на основе анализа зарегистрированных созвездий.

Отметим, что при одинаковых битовых скоростях передачи $B_c = 10$ Гбит/с для ВОСС с ЭП и КП символьная скорость при КП в два раза меньше, чем при ЭП и составляет $B_{cs} = 5$ ГБод. Это позволяет уменьшить оптическую полосу пропускания мультиплексора и демультиплексора с $\Delta v_c = 30$ ГГц в ВОСС с ЭП до $\Delta v_c = 10$ ГГц в ВОСС с КП. Это дополнительно уменьшает шумы от УСИ.

Исходные данные и результаты исследований для ВОСС с КП помещены в таблицу 2.

У	становленны	ые параметри	bl	Измеренные величины						
Кол-во пролетов, <i>N</i>	N ps_in, дБм а _{Dmux} , дБ g _{noy} , дБ		OSNR _{in} , дБ	OSNR _{in} , дБ р _{s_out} , дБм		<i>р</i> _Ф , дБм	OSNR _{out} , дБ	Q-фактор		
1	1,0	5	16	42	-1,5	-9	-14	28	16	
1	5,0	5	16	42	1,7	-5	-10	31	16	
5	1,0	5	16	42	1,9 –9		-14	21	9	
5	3,0	5	16	42	2,3	-7	-12	23	12	
5	5,0	5	16	42	3,6	-5	-10	25	13	
5	8,0	5	16	42	5,5	-2	-7	28	11	
5	10,0	5	16	42	7	0	-5	30	9	
5	13	5	16	42	9,5	3	-2,3	32	5	
10	5,0	5	16	42	5,2	-5	-10	22	10	
15	5,0	5	16	42	6,4	-5	-10	20	9	

Таблица 2. Результаты исследований ВОСС с КП

Вестник СПбГУТ Herald of SPbSUT

Из таблицы видно, что ВОСС с КП при среднем уровне суммарного входного сигнала на входе в пролеты p_{sin} = 5 дБм и расстоянии до 1500 км обеспечивает более высокое качество связи (Q>9), чем при ЭП. Однако можно отметить, что при КП Q-фактор даже при отличном качестве связи редко превышает величину 15, а при ЭП он может быть гораздо больше.

С уменьшением входного сигнала от ps_in = 5 дБм до 1 дБм качество связи снижается, Q-фактор уменьшается с 13 до 9, а OSNR — с 25 до 21 дБ при длине ВОЛТ 500 км (пять пролетов). При p_{s in} = 5 дБм с увеличением количества пролетов с 1 до 15 (общая длина ВОСС изменяется от 100 до 1500 км) Q-фактор и OSNRout постепенно уменьшаются: Q-фактор от 16 до 9, а OSNR от 31 до 20. Можно отметить, что с увеличением количества пролетов нарастает постоянный уровень УСИ на выходе ВОЛТ p_{s out} от 1,7 до 6,4 дБм. При этом средний уровень сигнала на входе ФПУ практически не увеличивается.

На рисунке 7а показана зависимость уровня выходной оптической мощности передатчика от времени. Видно, что при фазовой модуляции QPSK и линейном кодировании NRZ уровень мощности составляет -11 дБ и не зависит от времени. Это характерно для ФМ и кодирования NRZ. Потери в модуляторе передатчика при этом составляют 8 дБ. На рисунке 7б показана спектрограмма сигнала передатчика 1-го канала. Видно, что спектрограмма передатчика с ФМ и кодом NRZ не содержит пика, как при АМ (см. рисунок 2).

a)

Рис. 7. Осциллограмма (а) и спектрограмма (б) сигнала на выходе передатчика

На рисунке 8 показаны спектрограммы оптического сигнала на входе и выходе пятипролетного ВОЛТ общей длиной 500 км при разрешающей способности OSA $\Delta\lambda = 0.01$ нм. Видно, что амплитуда выходного сигнала меньше входного на 4 дБ. Это связано с тем, что коэффициент усиления предварительного ОУ (16 дБ) в последнем пролете на 4 дБ меньше коэффициента усиления линейного ОУ (20 дБ).

Рис. 8. Спектрограмма сигнала на входе (а) и выходе (б) ВОЛТ

На рисунке 9а показана спектрограмма сигнала на выходе ВОЛТ при разрешающей способности OSA Δλ = 0,1 нм. Оптическое отношение сигнала к шуму составило 25 дБ. На рисунке 9б показана спектрограмма оптического сигнала на выходе 4-го канала демультиплексора и на входе ФПУ. Видно, что демультиплексор полностью подавляет сигналы соседних каналов.

Рис. 9. Спектрограммы сигналов на выходах ВОЛТ (а) и демультиплексора (б)

С выхода каждого ФПУ два потока цифровых электрических сигналов, соответствующие синфазной и квадратурной составляющим данного символа, поступают на входы DSP, где подвергаются ЦОС. На рисунке 10а показан перечень подключенных алгоритмов в DSP моделируемой ВОСС с КП, который включает 11 наименований, в том числе компенсацию ХД (Dispersion Compensation) и нелинейных искажений (Nonlinear Compensation), а также восстановление несущей частоты и ее фазы и т. п. На рисунке 10б показан перечень параметров 1-го канала моделируемой многопролетной ВОСС с КП, включающий частоту несущей, параметры ОВ, общую длину ВОСС и пролетов и др. (в общей сложности 15 параметров).

DSP fo	or QPSK Properties				×	DSP for 0	QPSK Properties				×		
Labet: DSP for QPSK					OK	Label: D	SP for QPSK				OK		
In	iti	Tim Ada Fre	Car Si	Cu]	Cancel	Initi.	. Filter Re Dis	Tim Ada Fre	Car Si.	Cu	Cancel		
Dis	Name	Value	Units	Mode		Disp	Name	Value	Units	Mode			
	Polarization Type	Single		Normal	Evaluate		Dispersion	Compensation Parameters			Evaluate		
	Enable DC Blocking			Normal	Script		OC Calculation Domain	Frequency Domain		Normal	Script		
	Enable Normalization			Normal			Channel Wavelength	193.1	THz	Normal			
	Enable Low Pass Filter			Normal			OC Reference Wavelength	1550	nm	Normal			
	Enable Resampling			Normal			Dispersion Coefficient	16.75	ps/nm*km	Normal			
	Enable QI Compensation			Normal			Residual Dispersion Slope	0.075	ps/nm^2*k	Normal			
	Enable Dispersion Compe			Normal			Propagation Length	500	<u>km</u>	Normal			
	Enable Nonlinear Compens	•		Normal			OC Number of Taps	181		Normal			
	Enable Timing Recovery	nable Timing Recovery 🔽 Normal					Nonlinear Compensation Parameters						
	Enable Adaptive Equalizer			Normal	Load		iber Alpha	0.2	dB	Normal	Load		
	Enable Frequency Offset E			Normal			Fiber N2	26e-021		Normal			
	Enable Carrier Phase Esti			Normal	Save As		Fiber Aeff	80e-012		Normal	Save As		
							iber length per span	100	<u>km</u>	Normal			
					Security		Ionlinear ratio	0.48		Normal	Security		
							lonlinear stepsize	20	km	Normal			
							lonlinear kk	0.76		Normal	11		
							aunch power	-3	dBm	Normal	11		
]						1		
				<u></u>	P Help					<u></u>	Help		
		a)						б)					

Рис. 10. Перечни: а) алгоритмов ЦОС в DSP, б) параметров ВОСС, необходимых для ЦОС в DSP

На рисунке 11а показано сигнальное созвездие для 1-го канала после ЦОС в DSP. Видно, что все четыре символа надежно разделены, а Q-фактор равен 12,6. На рисунке 11б показан синфазный электрический сигнал 1-го канала после цифро-аналогового преобразования сигнала из DSP. Он имеет вид бинарного сигнала с кодом NRZ, однако шумовая составляющая в нем присутствует. Такой же сигнал можно вывести из DSP для квадратурной составляющей.

Заключение

Основными критериями сравнения ВОСС с ЭП и КП являются: скорость и дальность передачи, количество каналов в одном OB, качество связи, которое характеризуется Q-фактором и OSNR, сложность и стоимость оборудования и его эксплуатации.

По предельным скоростям передачи ВОСС с КП существенно превосходят ВОСС с ЭП благодаря возможностям применения многоуровневой модуляции, повышению символьной скорости и более высокой чувствительности ФПУ с КП.

По предельной дальности связи ВОСС с КП существенно превосходят ВОСС с ЭП благодаря более высокой чувствительности ФПУ с КП и исключению потерь в модулях для компенсации ХД.

По возможному количеству каналов в одном ОВ и по качеству связи КП и ЭП равноценны.

Однако ВОСС с КП значительно сложнее и дороже, как в производстве, так и в эксплуатации, чем ВОСС с ЭП.

Таким образом, в настоящее время и обозримом будущем вновь строящиеся и реконструируемые ВОСС могут использовать как КП, так и ЭП. Для более дешевых вариантов построения ВОСС с ограничениями по скорости и дальности вполне пригодны ВОСС с ЭП. Для ВОСС с предельно большими скоростями и расстояниями необходимо использовать более дорогие решения, т. е. ВОСС с КП.

Литература

1. Трещиков В. Н., Листвин В. Н. DWDM-системы. М.: Техносфера, 2021. 420 с.

2. Былина М. С., Глаголев С. Ф., Дюбов А. С. Сравнительный анализ методов энергетического и когерентного приема цифровых информационных оптических сигналов. Часть 1. Энергетический прием // Труды учебных заведений связи. 2017. Т. 3. № 3. С. 12–20. EDN: ZIWOIH

3. Былина М. С., Глаголев С. Ф., Дюбов А. С. Сравнительный анализ методов энергетического и когерентного приема цифровых информационных оптических сигналов. Часть 2. Когерентный прием // Труды учебных заведений связи. 2017. Т. 3. № 4. С. 21–28. EDN: YMIHMY

4. Наний О. Е., Трещиков В. Н., Убайдуллаев Р. Р. Дальность работы и пропускная способность когерентных систем связи // Вестник связи. 2013. № 9. С. 13–19. EDN: VNVUUJ

5. OptiSystem. Tutorials. Vol. 1: Optical Communication System Design Software. Version 14. Ottawa: OptiWave, 2015. 489 p.

Статья поступила 28 ноября 2024 г. Одобрена после рецензирования 09 декабря 2024 г. Прината к публикации 13 покобря 2024 г.

Принята к публикации 13 декабря 2024 г.

Информация об авторах

Глаголев Сергей Федорович — кандидат технических наук, доцент, доцент кафедры оптических и квантовых систем связи Санкт-Петербургского государственного университета телекоммуникаций им. проф. М. А. Бонч-Бруевича. E-mail: glagolev.sergey@sut.ru

Какусилумезо Сандру Эдуарду — студент 1-го курса магистратуры Санкт-Петербургского государственного университета телекоммуникаций им. проф. М. А. Бонч-Бруевича. E-mail: Kakusilumezo.se@sut.ru

Агоштинью Пенаш Созинью — студент 2-го курса магистратуры Санкт-Петербургского государственного университета телекоммуникаций им. проф. М. А. Бонч-Бруевича.

Comparative Study of Multi-channel Multi-span Fiber-optic Communication Systems with Energy and Coherent Reception

S. Glagolev, S. Kakusilumezo, P. Agostinho

The Bonch-Bruevich Saint Petersburg State University of Telecommunications, St. Petersburg, 193232, Russian Federation

Statement of the problem. Currently, transport and backbone communication networks use multichannel multi-span fiber-optic communication systems with energy and coherent reception of digital optical signals. They all use dense wave-domain multiplexing and linear optical amplifiers in each hop. **The purpose** of the work is to distinguish between the areas of application of fiber-optic communication systems with energy and coherent reception. For this purpose, a comprehensive comparative study of multi-hop fiber-optic communication systems with a speed of 10 Gbit/s with energy and coherent reception was carried out, using simulation modeling of the processes of generation, amplification, transmission, reception and processing of digital optical signals in modern fiber-optic communication systems. **The novelty** of the work lies in the proposed modeling schemes and methods for their research. The novelty of the work lies in the proposed modeling schemes and methods for their research. **Results:** objective criteria for comparing fiber-optic communication systems with energy and coherent reception were obtained, areas of their use in communication networks were determined. **Practical significance:** the developed modeling schemes can be used in the design of fiber-optic communication systems; they will be used to create laboratory work for students.

Key words: dense multiplexing in the wave domain, energy and coherent reception, threshold sensitivity, optical signal-to-noise ratio, Q-factor

Information about Authors

Glagolev Sergey — Ph.D. of Engineering Sciences, Docent, Associate Professor of the Department of Optical and Quantum Communication Systems (The Bonch-Bruevich Saint Petersburg State University of Telecommunications). E-mail: glagolev.sergey@sut.ru

Kakusilumezo Sandru – a 1st Year Master's Student (The Bonch-Bruevich Saint Petersburg State University of Telecommunications). E-mail: Kakusilumezo.se@sut.ru

Penash Agostinho — 2nd Year Master's Student (The Bonch-Bruevich Saint Petersburg State University of Telecommunications).